A note on abscissas of Dirichlet series

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bohr and Rogosinski Abscissas for Ordinary Dirichlet Series

We prove that the abscissas of Bohr and Rogosinski for ordinary Dirichlet series, mapping the right half-plane into the bounded convex domain G ⊂ C are independent of the domain G. Furthermore, we obtain new estimates about these abscissas. 1. Preliminaries Let us recall the theorem of H.Bohr [19] in 1914. Theorem 1.1. If a power series

متن کامل

Note on Absolutely Convergent Dirichlet Series

is it true that \f(s)\ s^k>0 for cr^O implies that (/(s))-1 is also of the form (1)? In this note, an affirmative answer is supplied.3 Let P be the semigroup of positive integers under multiplication, and let h(P) be the class of all complex functions a on P, a= {an}»~i, for which ||a|| = y^°-i \an\ is finite. We obtain a commutative Banach algebra by defining (aa)n = aan for complex a, (a+b)n ...

متن کامل

A Note on Dirichlet Characters

Denoting by r(k, m, p) the first occurrence of m consecutive fcth power residues of a prime p = 1 (mod k), we show that r(k, m, p) > c log p for infinitely many p (c is an absolute constant) provided that k is even and m ä 3.

متن کامل

On Kubota’s Dirichlet Series

Kubota [19] showed how the theory of Eisenstein series on the higher metaplectic covers of SL2 (which he discovered) can be used to study the analytic properties of Dirichlet series formed with n-th order Gauss sums. In this paper we will prove a functional equation for such Dirichlet series in the precise form required by the companion paper [2]. Closely related results are in Eckhardt and Pat...

متن کامل

A note on lacunary series in $mathcal{Q}_K$ spaces

In this paper, under the condition that $K$ is concave, we characterize lacunary series in $Q_{k}$ spaces. We improve a result due to H. Wulan and K. Zhu.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas

سال: 2019

ISSN: 1578-7303,1579-1505

DOI: 10.1007/s13398-019-00647-y